Biochemistry I - Plants

Course CodeBSC102
Fee CodeS2
Duration (approx)100 hours
QualificationStatement of Attainment

Study Plant Biochemistry

  • Foundation course for anyone working with plants: from gardeners to research assistants
  • Improve your understanding of what makes plants grow
  • Improve your job prospects in horticultural, environmental, agricultural and other industries

Chemical reactions are at the heart of everything that happens in a plant; from the germinating of seeds and the growth of tissues, to the production of flowers and fruit. Understanding these chemical reactions will help you understand how plants grow, and in turn, how to treat them.

 

Prerequisites: Some secondary school chemistry will be helpful though it is not essential.

Lesson Structure

There are 9 lessons in this course:

  1. Introduction
    • The Basics
    • Atoms
    • The Atomic Nature Of Matter
    • The Structure Of Atoms
    • Elements And Compounds
    • Parts Of A Compound
    • Chemical Names
    • Alkyl Groups
    • Organic Compounds
    • Carbohydrates
    • Proteins
    • Amino Acids
    • Lipids
    • Nucleic Acids
    • Biochemical Processes In Plants And Animals
    • What Is Life?
    • Classification Of Living Things
    • Biochemistry
    • Biochemical Process In The Cell
    • The Carbon Cycle
    • Calculating The Components Of A Chemical
    • Atomic Weights Of Elements
  2. Lipids, Proteins & Carbohydrates
    • Carbohydrates
    • Types Of Carbohydrates
    • Hydrolysis
    • Aromatic Compounds
    • Aryl Groups
    • Lipids & Proteins
    • Characteristics Of Lipids
    • Naturally Occurring & Commercially Useful Lipids
    • Proteins
    • Amino Acids
    • Types Of Proteins
    • Lipoproteins
    • Proteins In The Human Diet
    • Protein Structure
  3. Enzymes & Hormones
    • Definitions
    • Enzymes
    • Plant Hormones
    • Chemical Growth Modification
    • Effect Of Temperature
    • Effect Of Ph
    • Activation
    • Isoenzymes
    • Inhibition
  4. Nitrogen & The Nitrogen Cycle
    • The Role Of Nitrogen
    • The Nitrogen Cycle
    • Nitrogen Fixation
    • Ammonification
    • Nitrification
    • Denitrification
    • Nitrogen Loss
    • Forms Of Nitrogen
    • The Urea Cycle
  5. Photosynthesis & Respiration
    • Photosynthesis
    • The Light Reactions
    • The Dark Reactions
    • Environmental Factors Which Affect Photosynthesis
    • Respiration
    • The Rate Of Respiration
  6. Assimilation & Transpiration
    • Water And Plant Growth
    • Transpiration
    • Environmental Factors That Affect Transpiration & Water Uptake
    • Metabolism Of Plants & Animals
    • Animal Nutrition
    • Animal Respiration
    • Animal Synthesis
    • Mechanisms Of Nutrient Uptake In Plants
  7. Acidity & Alkalinity
    • Ph
    • Measuring Ph
    • What Is An Acid Or Base?
    • Buffers
    • Nutrient Availability & Ph
    • Cation Exchange Capacity & Ph
    • Plant Cellular Ph Balance
  8. Chemical Analysis
    • Laboratory Testing Of Soils
    • Soil Sampling
    • Conductivity
    • Measuring Salinity
    • Conductivity & Hydroponics
    • Colorimeters
    • Chromatography
    • UV/Visible Spectrophotometers
    • Other Instruments Used In Laboratories
  9. Biochemical Applications
    • Alkaloids
    • Poisonous Plants
    • Herbal Medicines
    • Chemical Toxicities
    • Chemical Pesticides: Insecticides
    • Summary Of Main Chemical Groups Of Insecticides
    • Comparative Toxicities Of Pesticides
    • How Poisonous Is A Chemical?
    • Tissue Culture
    • Problems
    • Tissue Culture Procedures
    • Explants
    • Sterilisation
    • Nutrient Media
    • Methods Of Shoot Induction & Proliferation
    • Multiplication By Adventitious Roots
    • Rooting And Planting Out
    • Environmental Conditions
    • Types Of Media
    • Composition Of Nutrient Media
    • Cleanliness
    • Light And Temperature Conditions
    • Hormones
    • Laboratory Requirements
    • Glossary Of Terms Used In Tissue Culture
    • Biotechnology In Horticulture
    • Cell Fusions
    • Overcoming Pollination Incompatibility

Aims

  • Identify characteristics of common chemical compounds important in plant biochemistry.
  • Explain the characteristics of major biochemical groups including; carbohydrates, lipids and proteins.
  • Explain the characteristics of chemicals which control biological processes, including enzymes and hormones.
  • Identify the role of nitrogen in plant biological processes, including the nitrogen cycle.
  • Identify the role of photosynthesis in biological systems.
  • Explain the role of respiration in plants.
  • Explain characteristics of assimilation and transpiration in plants.
  • Explain the effect of acidity and alkalinity on biochemical systems.
  • Develop simple chemical analysis skills relevant to testing plants and soils.
  • Identify applications and uses for biochemical processes and products.

WHERE CAN THIS COURSE TAKE YOU?

  • To further study in biochemistry.
  • As a prerequisite to gain entry into higher education.
  • To give you a sound understanding of the biochemical processes in plants - useful for those working in research, in hydroponics, in protected plant culture etc.

 

 

HOW TO ENROL

Click box below on left hand side -follow instructions.

IF YOU NEED ADVICE - click here to use our FREE ADVISORY SERVICE